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ABSTRACT

Snakes are a valuable yet understudied taxon for investigating evolutionary adaptations in the vertebrate retina. They possess
up to three visual pigments: a short-wavelength-sensitive opsin (SWS1), a medium/long-wavelength-sensitive opsin (LWS),
and rhodopsin (RH1). Nocturnal snakes have duplex retinas containing both rod and cone photoreceptors, whereas diurnal
caenophidian (“advanced”) snakes exhibit simplex “all-cone” retinas, lacking morphologically typical rods. In this study, we
analyzed photoreceptor morphology in the retinas of caenophidian snakes using high-resolution scanning electron microscopy
(SEM) and examined visual-opsin expression patterns with immunohistochemistry (IHC). Our analyses revealed remarkable
interspecific variability in visual-cell morphology. Light microscopy showed that in all sampled diurnal caenophidians,
photoreceptors expressing RH1 exhibit a gross cone-like morphology. However, SEM analysis revealed a subset of photoreceptors
with distinct features—thinner inner segments and rod-like synaptic terminals—suggesting they are transmuted, cone-like rods.
In retinal sections from nocturnal caenophidian snakes, coexpression of the cone opsins SWS1 and LWS in individual cones
was observed, whereas rhodopsin expression remained restricted to morphologically typical rods and showed no coexpression.
In contrast, diurnal caenophidians commonly coexpress rhodopsin and SWS1 in single cones, with some instances of triple
coexpression (SWS1, RH1, and LWS) in single cones. We evaluated the patterns of spatial distribution of RHI1- and SWSI-
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expressing photoreceptors, as well as SWS1 + RH1 multiopsin cones, in wholemounted retinas of ten species. Our findings revealed
considerable species-specific variation in photoreceptor density, topography, and opsin coexpression patterns. IHC results suggest

that in some species, rhodopsin is not only expressed in transmuted, cone-like rods but may also be co-opted by UV/violet-sensitive

(SWSl-expressing) cones. These findings underscore the exceptional diversity and adaptive innovation in snake visual systems.
The unique features and striking interspecific differences in their photoreceptors highlight snakes as an outstanding taxon for

studying vertebrate visual-system function and evolution.

1 | Introduction

Two main types of photoreceptors in the outer part of the retinas
of vertebrates, rods and cones, typically operate in contrasting
light intensities (Lamb 2009). These photosensitive neurons
absorb photons and convey luminous information to inner-retinal
neurons, initiating visual processing. Rods are highly sensitive,
capable of generating a physiological response upon the absorp-
tion of a single photon (Rieke and Baylor 1998). Typically having
long, subcylindrical outer segments that contain large amounts
of rhodopsin photopigment (RHL1), rods are responsible for vision
under scotopic (low-light) conditions. Cones, in contrast, typi-
cally have smaller, tapered outer segments, are less sensitive, and
generate a faster response, and are therefore chiefly responsible
for photopic (daylight) vision. Different classes of visual opsins
expressed in subtypes of cones form different photopigments
that vary in their peak spectral absorption, allowing sensitivity
from short (ultraviolet [UV] to violet) to long (red) wavelengths
(Lamb 2013). Cone subtypes are feature channels that feed into
downstream parallel pathways for decoding both spectral and
nonspectral aspects of vision (Baden 2024).

In squamate reptiles (snakes and lizards), the established rod and
cone dichotomy of the vertebrate duplex retina is challenged by
unusual occurrences of (at least superficially) simplex retinas,
seemingly having only rods or cones as determined by gross
morphology. Based on broad comparative analyses of the visual
cells of squamates, the visual anatomist Walls (1942) suggested
that cones and rods are not immutable units but can inter-
convert evolutionarily via transitional states as adaptations to
changes in species’ daily activity patterns. Walls coined the term
“transmutation” to describe the morphological (and presumably
physiological) evolutionary transformation of photoreceptors
from cones to transmuted, rod-like cones and from rods to
transmuted, cone-like rods. Support for Walls’ transmutation
theory has more recently been found from molecular genetic
data, especially for the expression of RHI1 and the typical cone
opsins SWSI and LWS in caenophidian snakes with simplex
(seemingly all-cone or all-rod) retinas, and for the RH1 that is
expressed in transmuted, cone-like rods having cone opsin-like
functional characteristics (Bhattacharyya et al. 2017; Schott et al.
2016; Simdes et al. 2016).

In snakes, the absence of some ocular structures (e.g., ciliary
muscles, eyelids), visual-cell types (blue and green cones, typical
tetrapod double cones), and two cone visual opsins (short-
wavelength-sensitive opsin [SWS2] and RH2), all present in
lizards, points to visual-system simplification during the origin
of snakes from lizards, presumably as adaptations to burrow-

ing habits and/or nocturnal or crepuscular activity (Gower
et al. 2022). Snakes from the relatively “basal” and paraphyletic
Henophidia group (including pythons, boas, and pipesnakes)
have duplex retinas dominated by typical rods (with RH1) along
with two types of single cones, sensitive to short (UV) and to long
wavelengths with the SWS1 and LWS visual opsins, respectively.
Under Baden et al.’s (2025) newly proposed nomenclature for rod
and cone subtypes, these rods are termed PRO, and the LWS and
SWSI1 single cones are PR1 and PR4. This duplex retinal pattern
and photoreceptor complement likely approximates that of the
ancestral snake (e.g., Gower et al. 2022).

In the “advanced” and monophyletic Caenophidia (including
vipers, cobras, and colubrids), high species richness is accom-
panied by great diversity of retinal patterns and visual-cell
morphologies. Parallel transitions between diurnal and nocturnal
habits in many lineages apparently led to new evolutionary trajec-
tories of the visual system. Nocturnal caenophidian species from
different families have duplex retinas, with a prevalence of typical
rods with RH1 (PRO), in addition to three types of cones: large
single LWS cones (PR1), small single SWS1 cones (PR4), and one
type of double LWS cone absent in non-caenophidian snakes and
morphologically distinct from the double cones (PR5 + PR6) of
other tetrapods (Underwood 1968). On the other hand, many diur-
nal caenophidian species lack (morphologically) typical rods and
have so-called “all-cone” retinas (Underwood 1967; Walls 1934,
1942; Wong 1989), with four cone-like photoreceptors: large single
(red/green, PR1) and double LWS cones (red/green; resembling
the double cones of nocturnal caenophidian snakes), small single
SWSI cones (UV/violet; PR4), and a second type of small single
cone-like photoreceptors, sensitive to middle wavelengths (Hart
et al. 2012; Sillman et al. 1997). Using immunohistochemistry
(IHC), Schott et al. (2016) showed the expression of rhodopsin
and rod transducin in a subpopulation of small cone-like pho-
toreceptors of a diurnal colubrid, revealing the maintenance
of the rod phototransduction machinery. Transmission electron
microscopy (TEM) revealed that one subset of small photore-
ceptors has less-tapered outer segments and less-bulbous inner
segments compared to the true cones, and some ultrastructural
features of their outer segments that resemble those of rods
(Schott et al. 2016). These results combined demonstrate that in
diurnal caenophidian snakes, rods were not lost but underwent
evolutionary changes, acquiring a gross morphology similar to
that of cones. Whether the rhodopsin is purely expressed in
these transmuted, cone-like rods or also co-opted by true cones
is still not clear. It also remains to be investigated in detail
whether the synaptic terminals of transmuted, cone-like rods also
underwent morphological and/or physiological transformations
(Underwood 1968).

20f23

Journal of Comparative Neurology, 2025

85UB017 SUOWWIOD 8AIIe.D 8|qeoljdde ayy Aq peusenob ae 3ol VO ‘8sN JO S8|nJ 10 A%iqi8UIIUO A1 UO (SUOTPUOD-PUR-SWBIALI0O" A3 1M ALIq 1 U1 |UO//SIY) SUOBIPUOD Pue SWe | 84} 88S *[G202/0T/20] U0 AkeidiTauljuo A8 |IM exsiined [npeis3 apepsieniun Aq 2600L 8U9/Z00T 0T/I0p/Wod A8 | imAreiq1puljuo//:sdny Wwo.j pepeojumod ‘0T ‘5202 ‘T986960T



In this study, we aimed to fill some important knowledge
gaps regarding the outer-retinal photoreceptor morphology and
patterns of RH1 expression in “all-cone” retinas of diurnal
caenophidian snakes. Using THC, we labeled the three visual
opsins known to occur in snakes (SWSI1, RH1, and LWS) in retinal
sections of diurnal and nocturnal endoglyptodontan caenophid-
ian snakes, and we assessed the distribution of photoreceptors
and patterns of opsin expression in whole retinas of diurnal
species. In nocturnal taxa, we identified distinct RH1 rods and
(single) SWSI and (single and double) LWS cones. Coexpression
of the two cone opsins (SWS1 and LWS) in a single cone was
common in some nocturnal species. Surprisingly, in diurnal
caenophidians, we found that RH1 is frequently coexpressed with
SWS1, something not reported elsewhere among vertebrates.

2 | Material and Methods
2.1 | Animals

Snakes used in this study (n = 32) (Table 1; Table S1) were
collected through fieldwork, donated by the Butantan Institute
(Sao Paulo, Brazil), housed at the Liverpool School of Tropi-
cal Medicine (UK), or obtained commercially. The permit for
specimen collection in the field was issued by the Brazilian
Ministry of the Environment and the competent authority, the
Chico Mendes Institute for Biodiversity Conservation (SISBIO
79155, 86246). Animals were euthanized during the daytime,
using either a lethal injection of sodium thiopental (100 mg/kg),
a lethal overdose of sodium pentobarbital, or a lethal dose of
ketamine and xylazine. All procedures were in accordance with
ethical principles of animal management and experimentation
established by the Brazilian Council for Control of Animal Exper-
imentation (CONCEA) and approved by the Ethics Committee of
Animal Research of the Psychology Institute, University of Sdo
Paulo, Brazil (permission number 9284040521); the Institutional
Animal Care and Use Committee at Charles University in Prague
and the Ministry of Culture of the Czech Republic (permission
number UKPRF/28830/2021); or the UK Home Office and the
LSTM Animal Welfare and Ethical Review Board (establishment
license X20A6D134).

We follow a classification of caenophidians in which major
lineages sometimes referred to as subfamilies within Colubridae
(e.g., Colubrinae and Dipsadinae) are instead considered as fami-
lies (e.g., Colubridae and Dipsadidae, respectively, following, e.g.,
Zaher et al. 2019). We sampled 24 species from six caenophidian
families: 15 species with simplex, “all-cone” retinas (potentially
with transmuted, cone-like rods) from five families (Colubridae,
Dipsadidae, Natricidae, Psammophiidae, and Elapidae), and
nine species with duplex retinas (with morphologically typical
cones and rods) from two families (Viperidae and Dipsadidae)
(Table 1). Information on specimens and voucher numbers is
available in Table S1. Except for six small, probably juvenile
specimens of Philodryas patagoniensis, Chlorosoma viridissimum,
Bothrops jararaca, B. jararacussu, Oxyrhopus guibei, and Dryophy-
lax chaquensis (Table S1), all other individuals sampled for this
study were relatively large and probably adults (according to
Andrade 2021; Bellini et al. 2014; Ferreira 2013; Loebens et al. 2017,
2020; Passos 2018; Pizzato et al. 2008; Quintela and Loebmann
2019; Sazima 1992; Scartozzoni et al. 2009; Silva et al. 2020;

Siqueira et al. 2013). Vernacular names of many snakes are not
well-established but are reported here for the sampled species in
Table S2.

Following euthanasia, eyes were enucleated, and when possible
(depending on field or lab conditions and experience of dissector),
small radial incisions were made in the dorsal region for subse-
quent orientation. Corneas were removed, and eyecups were fixed
for THC or electron microscopy.

2.2 | Tissue Preparation for Electron Microscopy
and Image Acquisition

For electron microscopy, eyecups of seven species (Table 1) were
fixed in 2% glutaraldehyde (GA) solution (Electron Microscopy
Sciences) diluted in 150 mM cacodylate buffer (CB), pH 7.4,
for 3 h in the dark at room temperature, then preserved in
150 mM CB at 4°C. Small pieces, approximately 1 cm?, were
cut from the central retina, adjacent to the optic nerve. Samples
were stained in a solution containing 2% osmium tetroxide, 3%
potassium ferrocyanide, and 2 mM CaCl, in 150 mM CB for
2 h at 4°C, followed by 1% thiocarbohydrazide (1 h at 50°C)
and 2% osmium tetroxide (1 h at room temperature), and then
stained with 1% aqueous uranyl acetate for 6 h at 45°C and
lead aspartate for 6 h at 45°C, as described by Briggman et al.
(2011). Tissues were dehydrated at 4°C through an ethanol series
(70%, 90%, and 100%), transferred to propylene oxide, infiltrated
at room temperature with 50%/50% propylene oxide/Epon, and
then 100% Epon. Samples were embedded in medium-hard
Epon (Embed812, 26 mL; dodecenyl succinic anhydride, 15 mL;
N-methylaniline, 11 mL; BDMA, 1.2 mL; Electron Microscopy
Sciences) and cured in embedding molds at 70°C for 48 h.

Serial sections at 40 nm were collected on wafer pieces and
mounted on an aluminum pin with electrically conductive glue.
High-resolution EM micrographs were taken using a Zeiss Supra
55 scanning electron microscope operating at 5kV with the in-lens
detector.

2.3 | IHC (Retinal Sections and Wholemounts)

Eyes collected for IHC procedures were fixed in 4% paraformalde-
hyde (PFA) diluted in phosphate-buffered saline (PBS, 10 mM,
pH 7.4) for 3 h at room temperature and subsequently pre-
served in PBS containing 0.05% sodium azide at 4°C. Eyes
from three species (Psammophis elegans, Pantherophis guttatus,
and Thamnophis sirtalis) became available when animals were
euthanized for another study (Kverkova et al. 2022). These eyes
were dissected, fixed in PFA 4% for 1 h, rinsed in PBS, incubated in
30% sucrose solution for 24 h, transferred to an antifreeze solution
(30% glycerol, 30% ethylene glycol, 40% PBS), and stored at —20°C
for further processing.

Retinas from 19 species (Table 1) were used to obtain vertical
sections with a vibratome (Leica VT 1200 S). Retinas were
embedded in 4% agarose, and sections at 70 um thickness were
collected and stored in PBS at 4°C. All sections from each retina
were pooled, and the retinal regions of origin of each section
were not recorded. For wholemount preparations, retinas were
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carefully dissected from eyecups. When the pigment epithelium
was too firmly attached to the retina and its removal would
compromise the integrity of the photoreceptors, the pigment was
bleached by incubating the retina in a 10% hydrogen peroxide
solution diluted in PBS for 30-60 min at 55°C prior to THC.

Vibratome sections and whole retinas were processed free-
floating. Tissues were washed three times for 15 min in PBS,
blocked with 10% normal donkey serum with 1% TritonX-100
in PBS for 1 h, and incubated in primary antibodies diluted in
PBS with 1% Triton X-100 (Table 2). Sections were incubated
overnight at room temperature, and whole retinas were incubated
for three to 5 days at 4°C. In retinal sections, mixtures of three
primary antibodies were used to label the three visual opsins
found in snakes (SWS1, RH1, and LWS) (Table 2). In whole
retinas, mixtures of anti-SWS1 and anti-RH1 antibodies were
used to analyze the expression of these two photopigments. After
incubation with primary antibodies, retinas were washed four
times for 15 min each in PBS and incubated with secondary
antibodies diluted in PBS with 1% Triton X-100 for 2 h at room
temperature, protected from light. Donkey secondary antibodies
were conjugated with Alexa 488, Cy3, and Alexa 647 (Dianova),
diluted 1:500. Retinal sections were counterstained with 4,6-
diamidino-2-phenylindole (DAPI) (1:10,000; Sigma-Aldrich) to
visualize nuclear layers. Sections and whole retinas were carefully
mounted onto glass slides with Aqua-Poly/Mount (Polysciences)
or Vectashield (Vector Laboratories Inc., California, USA) and
a coverslip. Visualizations of SWS1, RH1, and LWS expression
were carried out using the same secondary antibodies as above.
Secondary antibody specificity was tested by omission of the
primary antibodies in retinal sections. No unspecific staining was
detected.

Images were acquired with a confocal laser scanning microscope
(Leica TCS SP8), using the 405, 488, 554, and 647 nm lines
and the PMT (photomultiplier settings). Settings were chosen to
avoid cross-talk between the different lines. Micrographs were
obtained using an HC PL APO 40x/1.3 or HC PL APO 63x/1.4
oil immersion objective. Data were analyzed, and images were
adjusted for brightness and contrast with Fiji (Schindelin et al.
2012; RRID:SCR_002285).

2.4 | Antibody Characterization

For visual-opsin labeling, the following antibodies were used: (i)
anti-SWSI1 opsin (goat polyclonal, sc-14363; RRID: AB_2158332;
Santa Cruz Biotechnology Inc., Heidelberg, Germany; dilution
1:1000): antibody raised in goats against a synthetic peptide with
20 amino acids of human blue opsin (SWS1); (ii) anti-SWS1 opsin
(rabbit polyclonal, AB5407; RRID: AB_177457; Millipore; dilution
1:1000): antibody raised in rabbits against the last 42 amino acids
of the C-terminal of human blue opsin; (iii) anti-LWS opsin
(rabbit polyclonal, AB5405; RRID: AB_177456; Millipore; dilution
1:1000): antibody raised in rabbits against the last 38 amino acids
of the C-terminal of human red/green opsins (LWS); and (iv) anti-
rhodopsin (RH1) (clone RET-P1, mouse monoclonal, MAB5316;
RRID: AB_2156055; Millipore, Bedford, MA; dilution 1:1000):
antibody raised in mice against amino acids 4-10 (TEGPNFY) at
the N-terminus of rat rhodopsin. The specificity of the anti-SWS1
and anti-LWS antibodies was described previously for snakes

Primary antibodies used in this study and their sources.

TABLE 2

Source, Cat#, RRID

Dilution

Host, type

Antigen

Antibody

Millipore; Cat# AB5407;

Rabbit 1:1000
polyclonal

Raised against the last 42 amino acids of the C-terminal of human

Blue opsin
(OPNISW)

RRID: AB_177457

blue opsin—
NKQFQACIMKMVCGKAMTDESDTCSSQKTEVSTVSSTQVGPN

Santa Cruz
Biotechnology; Cat#

1:1000

Raised against a synthetic peptide with 20 amino acids of human Goat polyclonal

Blue opsin
(OPN1ISW)

blue opsin (SWS1)—EFYLFKNISSVGPWDGPQYH

sc-14363; RRID:

AB_2158332

Millipore; Cat# AB5405;

1:1000

Rabbit
polyclonal

Raised against the last 38 amino acids of the C-terminal of human

Red/green
opsin

RRID: AB_177456

red/green
opsins—RQFRNCILQLFGKKVDDGSELSSASKTEVSSVSSVSPA

Raised against amino acids 4-10 (TEGPNFY) at the N-terminus of

(OPNILW)
RET-P1
(RH1)

Millipore; Cat# MAB5316;

1:1000

Mouse
monoclonal

RRID: AB_2156055

rat rhodopsin
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(Bittencourt et al. 2019; Hauzman et al. 2014, 2017, 2021; Gower
et al. 2019; Tashiro et al. 2022). Both anti-SWS1 antibodies label
small single-cone photoreceptors in snakes (Tashiro et al. 2022).

2.5 | Stereological Assessment of the Density and
Distribution of Photoreceptors

The density and distribution of photoreceptors were estimated for
10 species from four families (Table 1). The number of retinas
sampled for each species varied from one to six, according to
specimen availability (Table 1; Table S1). To assess cell den-
sity, we applied a stereological approach based on the optical
fractionator method (West et al. 1991), modified for retinal
wholemounts (Coimbra et al. 2009, 2013). We used a motor-
ized fluorescent microscope (DM5500B, Leica Microsystems,
Germany), with a set of filters for Alexa Fluor 488 (excita-
tion blue, emission green) and CY3 (excitation green, emission
red), connected to a computer running the Stereo Investigator
software (MicroBrightField, Colchester, VT; RRID: SCR_024
705).

In the program, the coordinates of the retina contour were
obtained with a 5x/NA 0.15 objective. Approximately 200 count-
ing frames evenly spaced at a determined distance were posi-
tioned randomly, covering the entire area of the retina. The
sampling grid varied according to the size of the retina. Cells were
counted using a 40x/0.8 objective when lying entirely within
the counting frame (100 X 100 um) or when intersecting the
acceptance lines (up and right), without touching the rejection
lines (down and left) of the frame (Gundersen 1977). Specific
photoreceptor types were counted first by visualizing the labeled
outer segments of SWS1 and RH1 photoreceptors, labeled with
a combination of anti-SWS1 and anti-RH1 antibodies, under
fluorescent light. Photoreceptors coexpressing both of the labeled
photopigments, SWS1 and RH1 (here named as multiopsin
cones), were assessed by interchanging the blue/green filters for
each counting frame. Thereafter, all photoreceptors were counted
for each counting frame by adjusting the focus of the microscope
into the inner segments, viewed under bright light. LWS cones
were not labeled in wholemounted retinas; counts for them
were obtained by subtracting numbers of SWS1 and RH1 (and
SWS1 + RH1) photoreceptors from total photoreceptor counts.
In snakes, the accessory member of double cones is slender and
closely attached to the principal cone and often not visible in
flatmounted retinas, so double cones and large single cones were
not distinguished, and combined LWS photoreceptor counts are
instead reported.

To estimate the total population of photoreceptor neurons (N,y,;),
we used the following algorithm: N, = ZQ X 1/asf, where
2Q is the sum of the total number of neurons counted, and
asf, the area of sampling fraction, being the ratio between the
counting frame and the sampling grid (Coimbra et al. 2009). The
stereological parameters used to estimate the number of photore-
ceptors of each retina are described in Table S3. For each cell
type counted, we calculated the Scheaffer coefficient of error (CE)
and considered an acceptable value of < 0.10 (Glaser and Wilson
2008).

3 | Results

3.1 | Retina Structure and Photoreceptor
Population in Diurnal and Nocturnal Caenophidian
Snakes: Types of Photoreceptors, Their Synaptic
Terminals, and Patterns of Visual-Opsin Expression

3.1.1 | Overall Structure of the Retinas of Diurnal and
Nocturnal Caenophidian Snakes

Several notable differences were observed between the retinas of
sampled diurnal and nocturnal caenophidian snakes (Figures 1-
5; Figure S1). First, an extreme difference in photoreceptor
density is evidenced by the thickness of the outer nuclear layer
(ONL), which comprises the nuclei of rods and cones. Confocal
and electron microscopy images (Figures 1, 4, and 5; Figure
S1) show approximately 5-8 rows of photoreceptor nuclei in
nocturnal species. The inner nuclear layer (INL) (with the nuclei
of horizontal cells, bipolar cells, and amacrine cells) is similar in
thickness to or thinner than the ONL (Figures 1, 4, and 5; Figure
S1), reflecting a probable high convergence of photoreceptors
to second-order neurons (bipolar cells). On the other hand, in
diurnal species, a thin ONL is formed by only one or two rows
of photoreceptor nuclei, and a thicker INL (Figures 1, 2, and 5;
Figure S1) reflects a probable low convergence of photoreceptors
to bipolar cells.

3.1.2 | Photoreceptor Inner Segments and Synaptic
Terminals: Rod-Like Spherules in the “All-Cone” Retinas
of Diurnal Caenophidian Snakes

From scanning electron microscopy (SEM) examinations of three
diurnal dipsadids, Tomodon dorsatus, Chlorosoma viridissimus,
and Philodryas patagoniensis, the inner segments of large single
cones and the principal member of double cones have ellipsoids
with large mitochondria containing a substantial amount of
electron-dense granules in their cristae (Figure 2). These granules
are absent in the accessory members of double cones and in the
small single cones of T. dorsatus and P. patagoniensis (Figure 2).
In C. viridissimus, one population of small cones has sparse
granules within the mitochondria of the ellipsoid (images not
shown). In T. dorsatus, two populations of small single cones
were clearly distinguishable from each other: one type is very
similar in shape to large single cones, but smaller and the second
type has narrower inner and outer segments (Figure 2B,C).
In P. patagoniensis, the accessory members of double cones
have pronounced paranuclear bodies, a unique structure of the
ophidian double cone, composed of a second aggregation of
mitochondria close to the nucleus (Underwood 1968; Walls 1942)
(Figure 2F,G). The outer plexiform layer (OPL) is dominated by
large pedicles of cones with numerous, long synaptic ribbons,
and, in rare cases, we identified a smaller, spherule-like terminal
with a single, long synaptic ribbon and with more densely
packed synaptic vesicles than in the large cone pedicles (Figure
2D,E,H,D).

In the sampled nocturnal caenophidians, with duplex retinas,
rods outnumber cones, and their terminals are clearly dis-
tinguishable (Figures 3 and 4). One large cone pedicle with
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FIGURE 1 | Phylogenetic relationships of the endoglyptodontan caenophidian snakes analyzed in this study, their photoreceptor complements,
and the retinal structure of two diurnal and two nocturnal species are shown in DAPI-stained cross sections. Nocturnal species are indicated in blue in
the phylogenetic tree. In nocturnal species, a thick outer nuclear layer (ONL) is observed, whereas in diurnal species, the ONL has only one or two rows
of photoreceptor nuclei. INL, inner nuclear layer; GCL, ganglion cell layer. Scale bars: 20 um. Phylogenetic relationships from Pyron et al. (2013) and
Zaher et al. (2009). The three parallel terminal branches depicted for “Henophidia” and for non-endoglyptodontan caenophidians each represent an
unspecified number of paraphyletic lineages. Additional information on vernacular names, types of photoreceptors, and the opsins that they (co-)express
is presented in Table S2.

several small ribbons is usually surrounded by several small 3.1.3 | Patterns of Visual-Opsin Expression in Retinas of
rod spherules with single long ribbons (Figure 3). Rods usually Caenophidian Snakes

display a stereotypical morphology, with long and narrow inner

and outer segments (Figure 4). In contrast, SEM examination In the duplex retinas of nocturnal viperid and dipsadid species,
of four species revealed considerable variation in cone mor- RH1 is expressed only in morphologically typical rods with long
phology. In the viperid Bothrops jararaca, single and double outer segments (Figure 5). In these taxa, the anti-LWS antibody
cones have bulbous inner segments with large mitochondria in labeled the outer segments of most cones, and the anti-SWS1
their ellipsoids containing many highly electron-dense granules labeled a less abundant population of single cones (Figure 5).
(Figure 4A-C). The outer segments of the cones are short and In nocturnal dipsadid species, coexpression of SWS1 and LWS
conical, and the outer and inner segments are positioned at  was frequently observed in what are presumably primarily SWS1
the level of the outer and inner segments of the rods. On the cones, based on strong SWS1 and weak LWS labeling (Figure 5).
other hand, the cones of the dipsadid Oxyrhopus guibei have In sampled diurnal caenophidian species, the photoreceptor
long and narrow inner and outer segments, approaching the population is dominated by LWS cones, both single and double
shape of those of the rods (Figure 4D-F). The cone ellipsoids (Figure 5). Two populations of small cone-like photoreceptors
are not bulky and are discretely larger than those of rods, were labeled with antibodies for either SWSI or RH1 (Figure 5),
and no granules were observed in their mitochondria (arrows the latter possibly being transmuted cone-like rods. Coexpression
in Figure 4E,F). In two dipsadid species of the genus Dip- of the SWS1 and RH1 opsins in a third population of small,
sas, the cone myoids are extremely long, in a way that their single, cone-like multiopsin photoreceptors was common in most
bulbous inner segments lie beyond (scleral to) the rod outer species. Occasionally, in some diurnal caenophidians, we also
segments (Figure 4G-J). In Dipsas mikanii, the ellipsoids have observed some coexpression of LWS and RHI1, of LWS and SWS1,

some sparse granules within the mitochondria (Figure 4LJ), and in three species from different families (Psammophis elegans,
while in D. neuwiedi, no granules were observed (Figure Thamnophis sirtalis, and Tomodon dorsatus), all three visual
4G,H). opsins were found to be coexpressed in a single (cone-like)
Journal of Comparative Neurology, 2025 7 of 23
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FIGURE 2 | High-resolution scanning electron microscopy (SEM) images of retinas of two diurnal dipsadid snakes: Tomodon dorsatus (A-E) and
Philodryas patagoniensis (F-I). (A, F) Cross-sections showing overviews of the retinas. (B, C, G) Details of the photoreceptor and outer nuclear layer
(ONL). B. Predominance of large cones and double cones (dc), along with a distinguishable smaller photoreceptor, presumably a transmuted, cone-
like rod (arrow). The inner segments of large single cones and of the principal members of double cones appear dark due to the high concentration
of electron-dense granules in their ellipsoids. C. Higher magnification of another smaller photoreceptor, presumably a transmuted, cone-like rod. G.
Detail of the ONL, showing photoreceptor nuclei and paranuclear bodies (pb), an aggregate of mitochondria belonging to the accessory member of the
double cones. (D, E, H, I) Synaptic terminals of photoreceptors, with synaptic ribbons (arrows). Typical large terminals of cones (ct) (D, H, I) and smaller,
spherule-like terminals, presumably of transmuted, cone-like rods (rt), with a single long ribbon (E, I). GCL, ganglion cell layer; INL, inner nuclear layer;

IPL, inner plexiform layer; OPL, outer plexiform layer.

multiopsin photoreceptor, with weak labeling of LWS and RH1
and stronger SWSI1 (Figure 5). See Table S2 for detailed patterns
of opsin expression observed in each species analyzed.

3.2 | Retinal Specializations: Visual-Opsin
Expression in “All-Cone” Retinas of Caenophidian
Snakes

3.2.1 | Patterns of RH1 and SWS1 Expression in
“All-Cone” Retinas

From examining immunolabeled retinas, we found that coex-
pression of rhodopsin with the SWSI cone opsin is common in

some of the cone photoreceptors of most diurnal caenophidian
species sampled (Figure 5; Table S2). In wholemounted retinas,
we observed that the relative degree of expression of the two
photopigments varied among species (Figure 6). Besides pure-
SWSI and pure-RH1 photoreceptors, multiopsin cones (with both
SWS1 and RH1) had variable degrees of RH1 expression, revealed
by graded labeling intensities, from faint to strong, depending
on the retinal region. In contrast, SWS1 expression appeared
constant across the whole retina, as shown by intense labeling
in all marked cells (Figure 6). This suggests that, along with
pure-RHI (transmuted, cone-like rod) photoreceptors, rhodopsin
is also co-opted by some primarily SWSI cones in a graded
manner.
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FIGURE 3 | High-resolution scanning electron microscopy (SEM) images of cross-sectioned retinas showing the outer plexiform layer of the
nocturnal dipsadid caenophidian snake Oxyrhopus guibei. In (A), one large cone terminal (ct) is surrounded by many rod terminals (rt). Synaptic ribbons
are indicated by arrows. (B) A cone terminal (ct) with three synaptic ribbons (arrows) and a rod terminal (rt) with a single long synaptic ribbon (arrow).

FIGURE 4 | High-resolution scanning electron microscopy (SEM) images of duplex retinas of four nocturnal caenophidian snakes. (A-C)
The viperid Bothrops jararaca has cones with large inner segments, with ellipsoids containing mitochondria filled with electron-dense granules

(“microdroplets,” arrows). (D-F) Cones of the dipsadid Oxyrhopus guibei are elongated and lack microdroplets (arrows). (G-J) Species of the dipsadid

genus Dipsas have “two-tiered” retinas, with the inner segments of cones (arrows) lying scleral to rods; in D. mikanii, the ellipsoids of cones contain

sparse microdroplets (arrows in I, J), which are absent in D. neuwiedi (arrow in H).

3.2.2 | Density and Distribution of Photoreceptors:
SWS1, RH1, and SWS1 + RH1 Multiopsin Cones

Using a stereological approach, we analyzed the density and
distribution of photoreceptors in wholemounted retinas and the
expression patterns of SWS1 and RHI1 of ten endoglyptodontan

caenophidian species that have “all-cone” retinas with trans-
muted, morphologically cone-like rods, including four colubrids,
three dipsadids, two psammophiids, and one elapid (Tables 1
and 3). We compared the retinal topography of primarily arbo-
real versus primarily ground-dwelling species, given that habit
might be associated with different types of retinal specializations

Journal of Comparative Neurology, 2025
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FIGURE 5 | Retinal sections of nocturnal (top row) and diurnal (center and bottom rows) caenophidian snakes and patterns of visual opsin
expression. In the nocturnal dipsadid Oxyrhopus trigeminus (top), the retina is dominated by typical rods expressing RH1 (magenta). The cone population
is predominantly of LWS cones (white), with fewer SWS1 cones (green). In some nocturnal caenophidians, coexpression of the cone opsins SWS1 and
LWS was observed in presumably primarily SWSI cones (orange arrows). In the diurnal caenophidian snakes examined (center, bottom), there are no
morphologically typical rods, and the RH1 (magenta) is expressed instead in a group of small, probably transmuted, cone-like rods (magenta asterisks).
The retinas of these diurnal species are dominated by LWS cones (white), both single and double (white arrows). In some species, SWSI cones (green)
frequently also coexpress RH1, and in some cases, as in the natricid Thamnophis sirtalis (center), all three opsins are coexpressed in some (presumably
primarily SWS1) multiopsin cones (yellow arrows). In the retinal section of the colubrid Leptophis ahaetulla (bottom), only pure-SWS1 cones (green
asterisks) and pure-RHI cone-like rods (magenta asterisks) were observed, without visual-opsin coexpression. Neuron nuclei were stained in blue by

DAPI. ONL, outer nuclear layer; INL, inner nuclear layer.

(Tashiro et al. 2022) (Table 1). Eight of the ten species analyzed
are uncontroversially primarily diurnal. Two dipsadid species,
Dryophylax chaquensis and D. phoenix, are considered primarily
nocturnal and are typically found active at night (N.F.T.V. and
T.B.G., personal observations) (Carrillo 2017; Guedes et al. 2014;
Marques et al. 2017). However, the structure of their retinas and
the nature of their photoreceptor populations are much more
similar to those of diurnal species (Figure S2), and their retinas
were analyzed as such. The number of retinas analyzed per
species varied from 1 to 6, depending on specimen availability
(Tables 1 and 3).

Mean density of total photoreceptors varied from ca. 9000-
12,000 cells mm~2 in most ground-dwelling species to ca. 28,000
cells mm™ in the highly arboreal colubrid Oxybelis fulgidus
(Table 3, Figure 7). Isodensity maps of the total photoreceptor
complements showed a visual streak in nine of the ten snake
species (Figure 8; Figure S3). In some species, the visual streak
was well-defined, extending in a relatively tapered manner along
the nasal-temporal axis (e.g., the arboreal and ground-dwelling
colubrids Leptophis ahaetulla and Mastigodryas boddaerti, respec-
tively; Figure 8; Figure S3). In other species, the visual streak
was less defined, extending to the ventral quadrant of the retina

(e.g., the ground-dwelling psammophiid Psammophis elegans;
Figure S3). In only one species, the ground-dwelling elapid Naja
kaouthia, was no distinct specialization observed (no visual streak
or area centralis), and the photoreceptors were concentrated in
the ventral retina, with a peak density in the temporal region
(Figure 8).

The number of SWSI-expressing cones (including pure-SWS1
cones and SWS1 + RHI multiopsin cones) ranged from approxi-
mately 4% to 9% of the total photoreceptor population, depending
on species (Table 3, Figure 7). The distribution of these cones
varied considerably among species (Figure 8; Figure S3). In the
three arboreal colubrids Oxybelis fulgidus, Leptophis ahaetulla,
and Chironius flavolineatus, a diffuse distribution throughout the
retina was observed, with higher densities in the temporal retina.
Among the ground-dwelling species, in the elapid Naja kaouthia
and the psammophiid Malpolon monspessulanus, higher density
was also observed in the temporal retina. A poorly defined area
centralis was located in the ventral retina in the psammophiid
Psammophis elegans, the dipsadid Tomodon dorsatus, and the
colubrid Mastigodryas boddaerti. In general, the distribution of
pure-SWSI1 cones was similar to that of total SWS1 cones, but in a
more delimited manner (Figure S3). In the dipsadids Dryophylax
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M. monspessulanus T. dorsatus’

FIGURE 6 | Wholemounted retina of the diurnal psammophiid Malpolon monspessulanus (left) and the diurnal dipsadid Tomodon dorsatus (right),
immunolabeled with anti-RHI (magenta) and anti-SWS1 (green). The images were obtained from three different regions of the same retinas and show
the outer segments of the photoreceptors, with varying degrees of coexpression of the two photopigments. In the upper row, there is strong labeling of
both opsins (white arrows) in multiopsin cones (coexpression appears paler in the overlaid images). In the center row, multiopsin cones express the
SWS1 opsin more intensely, with weaker RHI labeling (white arrows); in M. monspessulanus, some photoreceptors expressing only SWSI (green arrow)
or only RH1 (magenta arrow) are also present. Bottom row, in M. monspessulanus, absence of multiopsin cones (no opsin coexpression), and presence
only of pure-SWSI1 cones (green arrow) and pure-RH1 cone-like rods (magenta arrow), and in T. dorsatus, all SWSI1 cones show some expression of RH1
(absence of pure-SWSI1 cones), and photoreceptors expressing RH1 vary from intense labeling in pure-RH1 cone-like rods (magenta arrow) to weak RH1
labeling in multiopsin, primarily SWSI cones (white arrow).
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FIGURE 7 | Total number and mean density of all photoreceptors (A, B) and photoreceptor subtypes (C, D) in retinas of caenophidian snakes: RH1
photoreceptors (green squares), SWS1 cones (magenta circles), and SWS1 + RHI multiopsin cones (grey diamonds). The values should be multiplied by
103. Cfla, Chironius flavolineatus, Dcha, Dryophylax chaquensis, Dpho, Dryophylax phoenix, Laha, Lepthophis ahaetulla. Mbod, Mastigodryas boddaerti,
Mmon, Malpolon monspessulanus, Nkao, Naja kaouthia, Oful, Oxybelis fulgidus, Pele, Psammophis elegans, Tdor, Tomodon dorsatus, Arboreal species
are indicated in green text; other species are ground-dwelling.
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chaquensis and D. phoenix, SWS1-expressing cones overall had a
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N =) Xy central and ventral area (Figure S3).
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2, 22 ground-dwelling species (Figure S3).
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o 82 . . .
§ E SE| e § R ; g = ventral retina, to ca. 3% of the photoreceptors in the ground-
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15 dwelling T. dorsatus, D. chaquensis, and M. boddaerti (Table 3;
: @ | B Sis welling T dorsaf a i ¢
7 0| g § 3 Figures 7 and 8; Figure S3). These SWS1 + RH1 multiopsin cones
g2z . . e .
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- 52O Caenophidian Snakes
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2 & il‘ % a s _7.; 5 Figure 1), we observed an “all-cone” retinal pattern, characterized
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= 23 < by the absence of morphologically typical rods (i.e., with narrow,
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elongated outer segments) and the presence of only cone-like
photoreceptors with short, conical outer segments. These retinas
have a thin ONL with only one or two rows of photoreceptor
nuclei and a thick INL, indicating probable low convergence of
photoreceptors to bipolar cells, a typical feature of photopic visual
systems, with low sensitivity to light but high spatial resolution
(Walls 1942). In nine out of 11 of the sampled species classified as
primarily nocturnal (Table 1, Figure 1), we observed a morpholog-
ically duplex retina, containing both cones and typical rods, along
with a thick ONL with multiple rows of photoreceptor nuclei. In
contrast, these retinas exhibit a slightly thinner INL, indicating
probably high convergence of photoreceptors to bipolar cells, a
hallmark of a highly sensitive, scotopic system (Walls 1942).

Two species of the genus Dryophylax (D. chaquensis and D.
phoenix), although primarily nocturnal (T.B.G. and N.F.T.V,,
personal observation) (Carrillo 2017; Guedes et al. 2014; Marques
et al. 2017), exhibit a typical diurnal retinal pattern, inconsistent
with their apparent circadian activity. A diurnal “all-cone” retina
has also been described in other species of this genus (Hauzman
2014) and for freshwater snakes of the genus Helicops (Hauzman
etal. 2021), which are also primarily nocturnal (De Aguiar and Di-
Bernardo 2004; Martins and Oliveira 1998). It has been suggested
that this incongruence between retinal structure and diel activity
pattern in these two genera may be due to evolutionary shifts in
activity period from recently diurnal ancestors, possibly related
to hunting strategies (Hauzman et al. 2021; Torello-Viera and
Marques 2019). Species of Helicops and Dryophylax actively
search for frogs near water bodies (Moraes-da-Silva et al. 2019;
Pergentino and Ribeiro 2017), suggesting that recent adjustments
in the occupied niche may not have been accompanied (yet) by
corresponding changes in retinal structure and photoreceptor
morphology (Hauzman et al. 2021).

Although unusual in vertebrates, the “all-cone” retinal pattern
is widespread among diurnal squamate reptiles (Walls 1942). In
mammals, for instance, rods dominate the retina in most species
(Peichl 2005), even in primarily diurnal groups such as primates.
A few exceptions are observed, such as tree shrews, meerkats, and
diurnal squirrels, which have cone-dominated retinas, seemingly
better adapted to photopic vision (Bernau 1969; Peichl 2005). In
caenophidian snakes, a cone-dominated retina appears to be the
norm in diurnal species and may correspond to the ancestral
state of the clade comprising the most recent common ancestor
of Elapoidea and Colubroidea and all of its descendants (see
Gower et al. 2022) (see below). The presence of duplex and
all-cone retinas across different caenophidian lineages further
highlights the remarkable adaptive plasticity of the snake visual
system.

4.2 | Photoreceptor Morphology

Classical morphological studies classified the retinas of diurnal
snakes as “all-cone” due to the absence of morphologically
typical rods, a low density of photoreceptors (Underwood 1967;
Walls 1942; Wong 1989), and lack of visual purple (Walls 1932),
the latter being the photopigment rhodopsin (RH1), previously
identified by the observation of a lavender coloration in freshly
dissected, dark-adapted retinas. However, more recent studies
using molecular biology and electron microscopy have revealed

the presence of rhodopsin in “all-cone” retinas of diurnal snakes
(Simdes et al. 2016) and photoreceptors with ultrastructural
features typical of rods (Schott et al. 2016). In the natricid
Thamnophis proximus, some photoreceptors exhibit the char-
acteristic rod outer-segment ultrastructure, with membranous
discs completely detached from the plasma membrane (Schott
et al. 2016), a trait that distinguishes rods from cones, the latter
having outer-segment discs connected to the cell membrane.
These findings provided support for Walls’ transmutation theory
(Walls 1934, 1942). Thus, in diurnal snakes, rods were not lost
but instead acquired gross-morphological and possibly functional
characteristics equivalent to those of typical cones, yet to be
determined in electrophysiological studies (Bhattacharyya et al.
2017; Schott et al. 2016). However, other features of the photore-
ceptor structure, also relevant for distinguishing between rods
and cones—such as their synaptic terminals—have never been
systematically compared in diurnal and nocturnal snakes and
were examined in this study for the first time.

4.3 | Photoreceptor Inner Segments

Using THC and SEM, we identified four types of cone-like
photoreceptors in diurnal snakes: large single cones, double
cones, and two types of small single “cones,” consistent with
previous studies (Hart et al. 2012; Hauzman et al. 2014, 2017;
Schott et al. 2016). In three diurnal dipsadids (Tomodon dorsatus,
Chlorosoma viridissimus, and Philodryas patagoniensis), SEM
images revealed that large single cones and the principal member
of double cones have inner-segment ellipsoids that contain large
mitochondria with highly electron-dense granules, while the
accessory member of double cones and small cones lack these
structures. One clearly distinguishable type of small single cone-
like photoreceptor has narrower inner segments, and these are
presumably the transmuted, cone-like rods in diurnal snakes.

Ball et al. (2022) provided insights into the optical role of
the aggregated mitochondria within the ellipsoids of mammals,
showing that they act as microlens-like features that focus light
onto the outer segments. In snakes, the granules in the cone
ellipsoids were previously reported in the retinas of two diurnal
caenophidians, Thamnophis sirtalis and Elaphe climacophora,
and characterized as “microdroplets”—small lipid structures
approximately 0.1 pm in diameter (Wong 1989). These micro-
droplets form a highly refractive agglomerate, referred to as a
“refringent body,” observed in the ellipsoid of true cones of many
caenophidians (Underwood 1967). Wong (1989) suggested that
these refractive microdroplets function as a condenser, directing
light toward the outer-segment discs, thus increasing photon
capture by the photopigments and reducing the Stiles-Crawford
effect (Bossomaier et al. 1989; Wong 1989). This mechanism may
compensate for the absence of cone oil droplets in snakes (present
in lizards, e.g., Underwood 1970; Walls 1942). Comparatively, in
species of tree shrew (genus Tupaia) that possess cone-dominated
retinas, extraordinarily large mitochondria in the cone ellipsoids
have cristae with unique concentric patterns arranged in a highly
ordered manner (Samorajski et al. 1966), a feature believed to
enhance the directional transmission of photons to the cone outer
segments (Knabe et al. 1997). These megamitochondria are absent
in the inner segments of Tupaia rods (Foelix et al. 1987).
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FIGURE 8 | Representative topographic maps of the retinas of four caenophidian snakes: the arboreal colubrid Leptophis ahaetulla and the ground-
dwelling colubrid Mastigodryas boddaerti, dipsadid Tomodon dorsatus, and elapid Naja kaouthia, showing different distribution patterns of total
photoreceptors, SWSI-expressing cones (pure-SWS1 and SWS1 + RH1 multiopsin cones), RH1-expressing photoreceptors (pure-RH1 cone-like rods and

SWS1 + RH1 multiopsin cones), and SWS1 + RH1 multiopsin cones. Topographic maps of the other six sampled species are found in Figure S3. Gray
shaded bars indicate the number of cells mm~2. The values should be multiplied by 10>. The optic nerve head is depicted as a white circle. D, dorsal; T,

temporal.

Among diurnal caenophidian snakes, retinal structure and pho-
toreceptor morphology appear broadly similar across species. In
contrast, nocturnal species analyzed in this study show con-
siderable variability in photoreceptor morphology. In nocturnal
species with duplex retinas, rods outnumber cones and follow
a typical amniote pattern, with relatively narrow and elongated
inner and outer segments. However, in four species analyzed
by SEM, cone morphology varied substantially (Figure 3). In
the viperid Bothrops jararaca, cones resemble those of diurnal
caenophidians, with bulbous inner segments and short, conical
outer segments interspersed among rod outer segments, along
with highly electron-dense granules in the ellipsoids, indicating
the presence of microdroplets. In contrast, the cones of the
dipsadid Oxyrhopus guibei have extremely elongated, narrow
inner and outer segments, nearly identical in length to those of
rods, superficially resembling the photoreceptors found in mice
and rats (Carter-Dawson and LaVail 1979). The ellipsoids in these
cones are slightly wider than those of rods and lack microdroplets.
We speculate that the elongated inner and outer segments of O.
guibei cones, similar to typical rods, may reduce the strong Stiles—
Crawford effect associated with the much shorter outer segments
in diurnal snakes, possibly explaining the absence of micro-
droplets in this species. In two species of the dipsadid Dipsas, cone
myoids are unusually elongated, with bulbous inner segments
positioned above the outer segments of rods, a condition that

has been referred to as a “two-tiered” retina (e.g., Underwood
1967) and observed in other species, including of the dipsadid
Leptodeira and the viperid Echis coloratus (Gower et al. 2019;
Miller and Snyder 1977). Interestingly, one of the two sampled
species of Dipsas (D. mikanii) has sparse microdroplets in the
ellipsoids, while the other (D. neuwiedi) lacks these structures.
Further studies of this genus might help to clarify the origin and
function of microdroplets.

We hypothesize that one explanation for the differences in
variability between diurnal and nocturnal caenophidians might
be that nocturnal habits in the lineages we sampled were
reacquired multiple times independently from a diurnal ancestral
endoglyptodontan caenophidian, providing selective pressure for
a shift from cone- to rod-dominated retinas and the reacquisition
of a duplex pattern. In different lineages of nocturnal endo-
glyptodontan caenophidians, nocturnal adaptation was seem-
ingly achieved either by elongating the inner and outer segments
of cones to compete with rods for incident photons (as in O.
guibei) or by elongating the myoid region, leading to “two-tiered”
retinas that would seem to somewhat separate the photopic
and scotopic systems (as in Dipsas) (Miller and Snyder 1977).
Under this interpretation, a diurnal retinal pattern was ancestral
to the clade comprising non-viperid, non-homalopsid endo-
glyptodontans (i.e., Elapoidea + Colubroidea, which includes all
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families sampled in this study except Viperidae), and nocturnality
reemerged multiple times, shaping distinct adaptive trajectories
in the visual system of nocturnal caenophidians. Tests and
refinement of this hypothesis would benefit from additional
taxon sampling, studies of molecular genetics and inner retinal
circuitry, and formal ancestral-state reconstruction analyses. An
alternative or additional explanation for the greater variability of
nocturnal caenophidian snake photoreceptors might be that these
species have an underappreciated diversity of visual ecologies.

Kim et al. (2016) proposed that in mammals, most rods originate
from short-wavelength sensitive (SWS) cones during develop-
ment, a process not observed in other vertebrates. In mammals,
rod and cone differentiation is controlled by two transcription
factors, NRL (neural retina leucine zipper) and TRA2 (thyroid hor-
mone receptor 32) (Ng et al. 2011; Swaroop et al. 2010). Postmitotic
photoreceptor precursors are predetermined to become SWS-
cones, and the presence of NRL in these precursors triggers rod
differentiation (Oh et al. 2007). Future research should examine
the hitherto neglected developmental mechanisms underlying
photoreceptor differentiation in snakes. Like mammals, snakes
likely evolved from a lineage that passed through a nocturnal,
or at least scotopic, “bottleneck” (Walls, 1942; Emerling 2017;
Gerkema et al. 2013) (but see Baden, 2024 and Fornetto et al.
2024, for a recently proposed alternative view), leading to similar
adaptations in the visual system to low-light conditions, including
rod-dominated duplex retinas, two types of single cones (express-
ing LWS and SWS1visual opsins), and the absence of double cones
and oil droplets, as seen in extant “basal” henophidian snakes.
Investigating potential adaptive convergences in the molecular
mechanisms of rod differentiation, particularly in diurnal and
nocturnal caenophidians, could offer further valuable insights
into the evolution of vertebrate vision.

4.4 | Photoreceptor Synaptic Terminals

Based on outer-retinal photoreceptors, Underwood (1968) pro-
posed two types of evolutionary transformations of cells: “Walls
transformation,” where one organelle gradually changes into
another type, and “Pedler transformation,” where multiple types
of organelles recombine in a mosaic-like manner. In alligators,
Kalberer and Pedler (1963) found a minority of cone-like outer
segments among numerous rod-like ones, combined with many
complex cone pedicles and a few simple rod terminals. They
concluded that alligator retinas must therefore contain many pho-
toreceptors with rod-like outer segments and cone-like pedicels.
In nocturnal caenophidian snakes, we observed small rod-like
terminals (spherules) with one or two long synaptic ribbons
and larger, more complex cone-like terminals (pedicles) with
many synaptic ribbons. In diurnal caenophidians (with “all-cone”
retinas), large cone pedicles predominated, with occasional small
terminals resembling typical rod spherules. This is the first time
that cones and transmuted, cone-like rod synaptic terminals have
been distinguished in diurnal snake retinas, providing further
evidence for Walls’ transmutation theory. In diurnal caenophid-
ian snakes, photoreceptor transmutation (of rods to cone-like
rods) appears to involve the shortening of rod outer segments
and reduction of their population, while the synaptic terminal
structure and parts of their phototransduction molecular genetic
complement (Schott et al. 2016) remain conserved.

4.5 | Patterns of Visual-Opsin Expression

Immunohistochemical analyses revealed the expression of three
visual opsins—SWSI, RH1, and LWS—in all caenophidian snake
species sampled in this study. In the rod-dominated retinas of
nocturnal species, RH1 expression is restricted to typical rods
with long outer segments, while the cone opsins SWS1 and
LWS are expressed in two distinct cone populations. In diurnal
species, the photoreceptor population is primarily composed of
single and double LWS cones, with smaller “cones” expressing
SWS1 and RHI. In all diurnal species, RH1 is expressed in
photoreceptors with a cone-like gross morphology. In the diurnal
psammophiid Malpolon monspessulanus, previous studies failed
to detect RHI1 expression (Simdes et al. 2016) or a photopigment
with spectral sensitivity in the rhodopsin range (Govardovskii
and Chkheidze 1989). However, our IHC analysis revealed RH1
expression in cone-like photoreceptors. We suggest that future
studies reexamine RHI expression in the retina and assess the
functionality of the RH1 protein in this species.

In nocturnal caenophidians, we frequently observed coexpression
of the two cone opsins within the same photoreceptor, with
stronger SWS1 and weaker LWS immunolabeling. This pattern
suggests that in nocturnal species, the photopigment sensitive to
medium/long wavelengths (LWS) is co-opted by some UV/short
wavelength cones. In most diurnal species, we observed wide
coexpression of RH1 with the cone opsin SWSI in cone-like
photoreceptors. Occasionally, we also observed coexpression of
the three visual opsins in a single photoreceptor, with strong
labeling of the SWS1 opsin and weaker labeling of the LWS
and RHI, suggesting that the latter two photopigments are co-
opted by some primarily SWS1 cones. In the tiger salamander
(Ambystoma tigrinum), up to three visual opsins are expressed
in a single photoreceptor: UV-sensitive cones have a primary
SWSI1 opsin and two secondary components, a short-wavelength-
sensitive opsin (SWS2) and a LWS-opsin, both expressed at levels
more than 100 times lower than the level of the primary opsin
(Isayama et al. 2014; Makino and Dodd 1996), suggesting that
SWS2 and LWS opsins are expressed in some primarily UV cones
in that species.

Based on the labeling patterns, we suggest that our results are
not technical artifacts, because: (i) opsin coexpression was not
detected in all species analyzed—for example, in the highly
arboreal colubrids Oxybelis fulgidus and Leptophis ahaetulla it
is barely observed; and (ii) when present, opsin coexpression is
not uniformly distributed across the retina but follows a graded
pattern that varies by retinal region. If the double labeling were
due to cross-reactivity of the antibodies, we would expect it to
be more homogeneous throughout the retina, without cones
expressing only one opsin. Additionally, opsin coexpression has
been well documented in various other vertebrates, including fish
(Dalton et al. 2014, 2017), amphibians (Isayama et al. 2014), and
mammals (Applebury et al. 2000; Glésmann et al. 2008; Lukats
et al. 2002, 2005; Peichl et al. 2004; Rohlich et al. 1994), and has
been confirmed through physiological methods (Calderone and
Jacobs 1995; Dalton et al. 2014, 2017; Isayama et al. 2014).

The expression of two visual pigments in one photoreceptor
broadens the spectral range of its sensitivity (Applebury et al.
2000). The functional relevance of this phenomenon, therefore,
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may be associated with an increased capacity to detect photons
under photopic conditions. In contrast, the capacity for color
discrimination may be impaired, depending on the levels of
coexpression of the opsins. In a species of cichlid fish, Dalton
et al. (2014) described different combinations of opsins with
similar spectral sensitivity (RH2Aa, RH2AS, RH2B, and LWS)
being coexpressed in different regions of the retina, resulting
in regionalized spectral adjustments to environmental light. In
mammals, the coexpression of SWS1 and LWS opsins has been
demonstrated by IHC in several taxa, including species of marsu-
pials, lagomorphs, and rodents (Applebury et al. 2000; Glésmann
etal. 2008; Lukats et al. 2002, 2005; Peichl et al. 2004; Rohlich et al.
1994). In some rodents, such as the Siberian hamster (Phodopus
sungorus) and the pouched mouse (Saccostomus campestris), all
cones express both LWS and SWSI cone opsins with no signs of
regional gradients in the levels of expression (Lukats et al. 2002).
Therefore, only a single LWS-SWSI cone population exists, which
precludes color vision (Lukats et al. 2002). In the rod-dominated
retina of mice, although most cones coexpress both LWS and
SWSI opsins (Applebury et al. 2000), they can still discriminate
colors (Jacobs et al. 2004; Denman et al., 2018; Szatko et al., 2020;
Franke et al. 2024; Hofling et al. 2024). The LWS opsin in mice
is expressed in a dorso-ventral graded level, while the levels of
SWSI opsin are relatively constant (Applebury et al. 2000). In
the ventral retina, only a minority of cones exclusively express
SWSI1 opsin and are selectively contacted by blue-cone bipolar
cells (Haverkamp et al. 2005). This organization results in a dorsal
visual field with “normal” color vision and a ventral, achromatic
retina that may primarily serve specific contrast-detection tasks
(Baden et al. 2013; Breuninger et al. 2011; Neitz and Neitz 2001;
Yin et al. 2006). As in mice, we consider it plausible that, in
diurnal snakes, photoreceptors expressing exclusively RH1 or
SWSI may serve as feature detectors for chromatic and non-
chromatic pathways (Baden 2024), while cones coexpressing both
photopigments may play a role in essential non-chromatic func-
tions, such as contrast and luminance detection. Post-receptoral
visual processing pathways have never been examined in snake
retinas, and future studies should investigate the presence of
specific blue-cone bipolar cells that could enable color vision in
this group.

Although the coexpression of cone opsins appears to be very
common among vertebrates, the coexpression of cone opsins with
RH]1, the typical rod opsin, seems to be extremely uncommon.
To our knowledge, it has been described only for two species
of snakes and in the diurnal ground squirrel. The burrowing
snake genus Anilios, a member of the lineage (typhlopoid and
leptotyphlopoid scolecophidians) that is a sister group to all
other extant snakes, has apparently all “rod” retinas in which
the LWS opsin is co-opted by some rods (Gower et al. 2021). In
the cone-dominated retina of the ground squirrel (Spermophilus
citellus), the SWS1 opsin is co-opted by some rods (Szél and
Rohlich 1988). Interestingly, in both the rod-dominated retinas
of scolecophidian snakes and the cone-dominated retinas of
squirrels, the cone opsins (LWS or SWS1) seem to be coexpressed
with the rhodopsin in some rods. Conversely, based on the
labeling patterns observed in our analyses of caenophidian
snakes, we interpret that rhodopsin is co-opted by some SWS1
cones, in addition to being expressed purely in transmuted, cone-
like rods. In diurnal caenophidian snakes, rhodopsin has been
suggested to function under photopic or mesopic conditions, with

a significant shift in its peak spectral sensitivity toward shorter
wavelengths (484 nm), potentially contributing to diurnal color
vision and compensating for the ancestral loss of RH2 opsins
in snakes (Schott et al. 2016). The coexpression of an S/UV
opsin with an “M opsin” (in this case, RH1) in multiopsin cones
in caenophidian snakes represents an intriguing evolutionary
parallel with mammals (with S + M opsin coexpression). This
adaptation may play a crucial role in optimizing light capture
under photopic or mesopic conditions.

4.6 | Retinal Topography

The spatial organization of retinal neurons is not homogeneous
and varies substantially not only among species but also within
the same individual, depending on the cell type (Collin, 2008;
Ahnelt and Kolb, 2000; Heukamp et al., 2020; Zhou et al.,
2020; de Busseroles et al., 2021). This variability enables optimal
sampling of the visual field and the extraction of light information
necessary for executing specific behaviors (Baden et al., 2013;
Qiu et al., 2021). Differences in habitat use, hunting strategies,
prey type, and predation pressure are traits that appear to be
associated with structural plasticity and considerable changes in
the distribution of different cell types in the retina, as has been
described in various vertebrate species (Collin, 1999; Schiviz et al.,
2008; Coimbra et al., 2014), including some snakes (Hart et al.
2012; Hauzman et al. 2014, 2018, 2021; Tashiro et al. 2022).

In 9 out of 10 caenophidian snake species analyzed, the photore-
ceptors form a horizontal streak—well-defined in some species
(e.g., Leptophis ahaetulla, Mastigodryas boddaerti) and less delim-
ited in others (e.g., Dryophylax phoenix, Psammophis elegans).
This type of specialization may facilitate a panoramic view of the
environment without the constant need for eye and head move-
ments (Collin 2008), which could enhance foraging efficiency.
The only exception observed was in the elapid Naja kaouthia,
which exhibited a higher density of photoreceptors in the ventral
retina. This specialization may enhance N. kaouthia’s superior
visual field, potentially relating to its characteristic defensive
behavior of raising the anterior part of its body perpendicular
to the ground while slightly reclining its head backwards and
displaying its “hood.” It can also “spit” venom anteriorly from its
fangs, targeting an approaching threat (Santra and Wiister 2017).
Thus, we can speculate that the ventral retinal specialization may
be associated with higher spatial resolution of the superior visual
field, aiding in the detection of threats ahead of the snake.

Some notable differences in cell density and distribution were
observed between the arboreal and ground-dwelling species
analyzed. First, in the highly arboreal colubrids Oxybelis fulgidus
and Leptophis ahaetulla, the mean density of photoreceptors was
two to almost three times higher (close to 30,000 cells mm~2) than
in most ground-dwelling species (ca. 10,000 cells mm~2). High
cone density is likely associated with enhanced visual acuity,
which might be crucial for highly arboreal snakes, because vision
appears to be a key sensory modality in these species. Among the
ground-dwelling species, the psammophiid Psammophis elegans
stood out, with a mean density of approximately 17,000 photore-
ceptors mm~2. This species is considered highly visual and relies
on sight to hunt lizards (Chippaux 1999).
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The distribution of SWS1 cones appears to be subtly different
between the sampled arboreal and ground-dwelling caenophidi-
ans. In the former, SWSI cones were relatively scattered through-
out the retina, with a higher density in the temporal region.
In ground-dwelling species, SWS1 cones were concentrated in
the temporal area in Naja kaouthia, in the central retina in
Dryophylax chaquensis and Malpolon monspessulanus, and in
the ventral region in the other species. A ventral concentration
of SWSI cones has been reported in other ground-dwelling
(Hauzman et al. 2014; Tashiro et al. 2022) and aquatic snakes
(Hauzman et al. 2021). A higher density of short-wavelength-
sensitive cones in the ventral retina appears to be an adaptation
for snakes spending most of their time on the ground, possibly
facilitating the detection of dark objects against a brighter sky,
as observed in murid rodents (Baden et al. 2013), enhancing the
detection of aerial predators.

The distribution of RH1 photoreceptors showed a pronounced
difference between the arboreal and ground-dwelling species,
with higher density in the dorsal and ventral retina, respectively.
When considering only pure-RH1 photoreceptors (presumably
transmuted, cone-like rods in the “all-cone” retinas), their distri-
bution was more restricted to specific areas—dorsal or ventral.
These differences in regionalization may be associated with an
improved ability to absorb incident light, enhancing vision in
low-light conditions from the lower field (darker forest ground)
in arboreal species and from the upper field in ground-dwelling
species.

Finally, variation in the proportions and distribution of
SWSI1 + RHI1 multiopsin cones suggests differences in their
importance for the visual functions of each species. In four
species, the proportion of multiopsin cones was very low, ranging
from 0.1% to 0.4% of the photoreceptors in the arboreal O. fulgidus
and L. ahaetulla and in the ground-dwelling N. kaouthia and
P. elegans. The areas where they were found were limited to
small spots in the retina, either ventral or dorsal. In the other
species, the proportion of multiopsin cones accounted for ca.
1%-3% of the photoreceptors. The differences in multiopsin-cone
distribution do not seem to be related to species phylogeny or
primary habit (arboreal or ground-dwelling). It also remains to
be seen whether interspecific differences in the regionalization of
photoreceptor types exist, or even within an individual’s lifespan,
given that for most species, only one or two retinas were available
for topographic analysis.

Predicting the functional significance of regionalization in pho-
toreceptors is challenging. First, detailed observations of natural
history are not available for most snake species, and there
have been very few behavioral experiments on the visual ability
of any species. Second, the physiology of transmuted cone-
like rods expressing rhodopsin is not yet fully understood,
including whether these photoreceptors function under higher
light conditions than typical rods and/or contribute to color
vision. However, regional differences between multiopsin cones
and pure-SWS1 and pure-RH1 photoreceptors suggest important
functional distinctions among these photoreceptor subtypes in
the retinas of caenophidian snakes. Future studies should focus
on the functional aspects of transmuted cone-like rods and
multiopsin photoreceptors and the developmental mechanisms
underlying photoreceptor differentiation and opsin expression in

diurnal and nocturnal snakes. Additionally, it will be particularly
valuable to investigate the factors involved in cell-fate decisions
to distinguish photoreceptor classes, as well as the gradients of
signaling molecules that allow regional specializations (Rister
and Desplan 2011).

5 | Conclusion

We evaluated aspects of retinal structure and photoreceptor
morphology in diurnal and nocturnal caenophidian snakes, using
THC and high-resolution SEM, and the expression patterns of
visual opsins with IHC. Our analyses revealed an extraordinary
variability in visual-cell morphology among species. The use of
specific markers for the three visual opsins expressed in snake
retinas, SWS1, RH1, and LWS, revealed coexpression of SWS1
and LWS opsins in some cones of nocturnal species (with duplex
retinas). In the “all-cone” retinas of diurnal species, the rod opsin
(RH1) was not only expressed purely in transmuted, cone-like
rods (that have superficially cone-like outer segments but retain
rod-like synaptic terminals) but was also widely coexpressed
with the SWSI cone opsin in (apparently primarily SWS1) cone
photoreceptors, an unprecedented finding for vertebrates.

In his comprehensive book on the comparative anatomy of the
vertebrate eye and retina, the visual anatomist Gordon L. Walls
(1942) stated that “snakes alone have rung as many changes
upon their visual-cell patterns as have all the other vertebrates put
together.” More than eight decades later, we continue to discover
additional ways in which snake retinas display exceptional
diversity and adaptive innovations. The unique features and
striking diversity of their visual cells, even among closely related
species, highlight snakes as an outstanding group for studying the
function and evolution of vertebrate visual systems.
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Supporting Information

Additional supporting information can be found online in the Supporting
Information section.

Supplementary Table S1. Snake specimens collected and voucher
numbers. Supplementary Table S2. Caenophidian snakes analyzed, their
photoreceptor complements, and visual opsins expressed. Vernacular
names for species are from Reptile Database (Uetz et al. 2025) except those
marked with asterisk (*), which are proposed here based on etymology of
scientific names and/or vernacular names of close relatives. Vernacular
names for families from Gower et al. (2023). Names of photoreceptors in
parentheses are following the nomenclature of Baden et al. (2025). Dashes
(-)indicate absence of a particular type of photoreceptor and/or visual-
opsin expression; question mark indicates that insuficient material was
examined to be confident about a potential absence and/or retinas were
labeled with antibodies against only SWS1and RH1, and therefore,
possible coexpression in cones with LWS is unknown. For species
indicated with two asterisks (**), only one or two retinas were available
and used only for wholemounts (not sections). Nocturnal taxa shaded
grey. Supplementary Table S3. Stereological parameters used to estimate
the number of photoreceptors. Supplementary Figure S1. Retinal sections
of nine nocturnal and nine diurnal endoglyptodontan caenophidian
snakes, showing the nuclear layers labeled with DAPI (gray). ONL,

outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.

The exact retinal region of each section is unknown. Scale bars: 20 um.
Supplementary Figure S2. Retinal cross-sections of the nocturnal dipsadid
snake D. chaquensis, showing a diurnal retinal pattern. The nuclear layers
are labeled with DAPI (blue). ONL, outer nuclear layer; INL, inner nuclear
layer; GCL, ganglion cell layer. Supplementary Figure S3. Topographic
maps of the retinas of caenophidian snakes.
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